Storia della Computer Vision: passato, presente, futuro
Download and listen anywhere
Download your favorite episodes and enjoy them, wherever you are! Sign up or log in now to access offline listening.
Description
In molti temi della vita e della tecnologia è utile, se non fondamentale, "conoscere il passato per capire il presente e orientare il futuro". Cit. Tucidide 460-404 a.C. Tale citazione...
show moreTale citazione può essere applicata anche alla Computer Vision, a maggior ragione perché molte delle tecniche del passato sono tutt'ora applicate per la risoluzione di problemi di visione. Talvolta vengono persino usate congiuntamente tecniche del passato e tecniche moderne al fine di massimizzarne i pregi e limitarne i difetti.
Spesso ci viene detto che il Deep Learning è lo state-of-the-art (SOTA) in tema di Visione Artificiale e che, durante il nostro percorso formativo, dovremmo quasi esclusivamente dedicarci a tale tecnologia tralasciando quella che viene definita la Computer Vision "tradizionale".
Pur essendo vero che il Deep Learning è a tutti gli effetti lo state-of-the-art, dovremmo prima di tutto studiare in modo approfondito tutto ciò che ha preceduto tale tecnologia, per almeno due semplici motivi:
• solo conoscendo la Computer Vision "tradizionale" possiamo comprendere meglio il Deep Learning, i suoi pregi ed i suoi difetti
• talvolta non è possibile utilizzare il Deep Learning per motivi di budget o semplicemente perché risulterebbe overkill per la risoluzione di un problema tendenzialmente semplice
Così come nella programmazione e nel Machine Learning, da un punto di vista progettuale, anche nella Computer Vision non esiste la tecnologia migliore in assoluto, esistono invece vari possibili approcci al problema di cui solo uno è quello ottimale.
In questo video verranno illustrate le principali tappe tecnologiche nel campo della Visione Artificiale che hanno scandito le fasi della ricerca scientifica in questo settore, dalle prime intuizioni degli anni '50 alle moderne reti neurali convoluzionali utilizzate nel Deep Learning ed alle più note funzionalità che tutti utilizziamo quotidianamente.
Information
Author | AI and Coding |
Organization | AI and Coding |
Website | - |
Tags |
Copyright 2024 - Spreaker Inc. an iHeartMedia Company
Comments